
Creating Projects on Windows XP Using Eclipse

• What is Eclipse ?
———————————————————————————————————————
From the web : “Eclipse is an extensible, open source IDE (integrated development environment). It is
completely platform and language neutral. In addition to the eclectic mix of languages supported by the
Eclipse Consortium (Java, C/C++, Cobol), there are also projects underway to add support for languages
as diverse as Python, Eiffel, PHP, Ruby, and C# to Eclipse.”

Eclipse is a multi-platform workbench, you can use it to develop C/C++ applications and, of course,
externals for MaxMSP. As the installation process of all the required tools is somehow tricky, this
document describes, steps by steps, how to install and configure a stable development environment using
the Eclipse workbench on Windows XP.

• Requirements
———————————————————————————————————————

- The Eclipse platform (currently 3.1.1)
- The C Development Toolkit (CDT) plugin (currently 3.0.1)
- A C/C++ compiler : CYGWIN (or MinGW)
- The MaxMSP Software Development Kit

Warning : the steps order in the installation process is critical. If you don’t follow the installation order, it
will probably result in a corrupted architecture and you will have to uninstall everything you previously
installed. As CYGWIN, for example, doesn’t come with a handy uninstaller, you’ll have to manually
uninstall all of its components, including the registry keys and already running processes.

• Installing Eclipse
———————————————————————————————————————
At this time of writing, Eclipse version is 3.1.1.

You can find it here : http://www.eclipse.org/downloads/index.php. You can choose to download it from
the Eclipse foundation website or to use a torrent file (!). I suggest you install Eclipse in the root directory
specifying which version you are currently using (i.e C:/Eclipse/3.1.1) and create a corresponding
workspace folder outside the main directory (i.e C:/Eclipse/Workspace/3.1.1) for convenience. In fact,
you’ll probably have to update your Eclipse platform to a very different version soon and choosing good
folder architecture is the best way to keep your work safe.

If you don’t have a JRE, i wonder how you could use the new Java externals in MaxMSP ;) and I suggest
you install it the usual way. Cycling ‘74 recommends the use of the SUN JRE/SDK.

http://www.eclipse.org/downloads/index.php

• Setting up Eclipse for Java externals development (optional)
———————————————————————————————————————
Now you are ready to test your brand new development platform. The following lines are a top bonus in
this document, describing how to setup a Java development environment for mxj externals and you can
skip it if you don’t care. But as Eclipse is, primary, a Java development tool, it is a good way to test your
installation.

- Choose File / New / Project / Java Project
- Name it “Test” or whatever
- Choose Libraries in the Java Settings pane, Add external jars
- Typically, add the max.jar from the ./common files/cycling ’74/java/lib directory, the jitter.jar

which should be in the same folder if you already own Jitter, and any other .jar files you will use
in your Java external.

In the Package Explorer window on your left, you should see a new tree with the name of your project
(“Test”) on top with the JRE library and the max.jar (and any other libraries you’ve previously added)
following. If not, right-click on your project, choose Properties / Java Build Paths / Order and Export,
and check the boxes in front of the linked libraries. This should do the trick.

- Now go to the ./common files/cycling ’74/java folder and edit the max.java.config text file :

under the line <; add /Users/topher/myclasses to the dynamic classpath of MXJClassLoader ;>,
replace by, i.e : <max.dynamic.class.dir "/Eclipse/WorkSpace/3.1.1/Test">, where “Test” is the
name of your new Java Project located in your workspace directory. Save the edited text file.

Now you are ready to write your first Java external for MaxMSP. Right-click on your Project Folder
in the Package Explorer, choose New / File, name it “Hello_World.java”. In the editor window, write :

import com.cycling74.max.*;

public class Hello_World extends MaxObject
{

 public Hello_World()
 {
 post(“Hello World!”);
 }
}

Make sure you’ve checked the Build Automatically option under the Project menu, and launch
MaxMSP. Type [mxj Hello_World] in an empty box. Et voila ! “Hello World!” should appear in the
Max window.

• Installing Cygwin

Now that you are sure your Eclipse platform is properly installed, you will need a GNU C/C++ compiler /
debugger and all the accompanying tools (make, binutils, GDB) available. You got the choice between
Minimalist GNU for Windows (MinGW) and Cygwin toolkits. We have chosen the Cygwin toolkit,
which is “a UNIX-like environment for Windows that includes a GCC port along with all necessary
development tools, including automake and the GNU Debugger (GDB). Cygwin is built around the
cygwin1.dll library.”

I would like to warn you that it is critical that you install Cygwin just after the Eclipse platform and before
the CDT plugin. If you don’t, the CDT plugin won’t be able to initialize itself around the Cygwin
components and paths. It will result in a non-working setup and you will have to uninstall both the CDT
and the Cygwin, this last one manually (see How To Uninstall Cygwin at the end of this document).

The installation process is not complex but no easy also. First, you’ll have to find a working setup file for
Cygwin. You can download it here : http://www.cygwin.com/setup.exe
This is not a package containing the Cygwin release but a remote setup engine that will let you choose the
components you want to install. You can take a look at the very exhaustive tutorial located here
http://www.ics.uci.edu/~stauro/courses/cse141/summer2005/CourseNotes/InstallingEclipse.htm and
follow exactly all the steps and choices described in it or read the following, which makes a digest of this
paper.

- Launch the setup.exe you have previously saved in a convenient place for future reuse. (Notice
the absolute graphic design of the Cygwin icon and keep in your head you’ll have to find a new
icon set quickly on deviantart.com in order to keep the perfect look of your customized windows
visual style).

- Select “Install from internet”

- Choose a root directory to install your Cygwin. (I suggest you keep the C:/Cygwin for

convenience). As I assume you’re on windows, be sure to check the DOS Default File Type option
and click next.

- Choose a folder to store the Cygwin installation package for future reuse

- Select your internet connection type

- Choose one of the download mirrors. It is sometimes a pain to find one that has a proper

connection speed or even the good files on its server. If you got an error, don’t panic, just re-
launch the setup from the beginning and choose another mirror.

- Now comes the tricky part : you are in front of a hundred possible programs to download but you

only need the C++ compiler / debugger components.

Expand the Devel list by clicking on the + on the right hand side.

http://www.cygwin.com/setup.exe
http://www.ics.uci.edu/%7Estauro/courses/cse141/summer2005/CourseNotes/InstallingEclipse.htm

Here are the options you need to choose (to choose, click on the “Skip” to the left hand side of
the column) :

NOTE : some options have already been pre-selected. Do not deselect any of these options unless
you know what you are doing. I have included a list of all options that are set on my machine.
Some may or may not have been pre-selected.

autoconf: Wrapper scripts for autoconf2.1 and autoconf2.5
autoconf2.1: Stable version of the automatic configure script builder
autoconf2.5: Development version of the automatic configure script builder
automake1.9: (1.9) a tool for generating GNU-compliant Makefiles
bashdb: Bash debugger
binutils: The GNU assembler, linker, and binary utilities
bison: A parser generator that is compatible with YACC
byacc: The Berkeley LALR parser generator
ctags: A C programming language indexing and/or cross-reference tool
expat: XML parser library written in C
gcc: C compiler upgrade
gcc-core: C compiler
gcc-g++: C++ compiler
gcc-mingw-core: Mingw32 support headers & libraries for GCC
gcc-mingw-g++: Mingw32 support headers & libraries for GCC C++
gdb: The GNU debugger
gettext: GNU Internationalization library and core utilities(PLUS LINK LIBS)
libiconv: GNU character set conversion library and utilities
make: The GNU version of the ‘make’ utility
mingw-runtime: MinGW Runtime
mktemp: Allows safe temp file/dir creation from shell script
pcre: Perl-Compatible Regular Expressions programs

I have personally added a few more features related to sound and graphics.

Click next and take a coffee, it could take some time.

<Trumpets of victory.wav> Cygwin is now installed on your computer. To test if your installation
was successful, open the command prompt (go to Start / Run, type “cmd”) and type « make ».
You should see the following message :

“make:*** No targets specified and no makefile found. Stop.”

If not, you have to modify your PATH environment variable. Right-click on “My computer”.
Go to Properties, Advanced Tab. Then in the left-bottom, select Environment Variables and find
the “path” variable. Click edit. Append : “;c:\cygwin\bin”.

Now, re-open the command prompt and type « make » again…

Time to install the CDT plugin.

• Installing CDT plugin

Eclipse has its own tool for updating / installing new products.

In the Help menu, got to Software Updates and choose Find and Install.

The Search for new features to install option should be already selected, hit Next.

If you have previous features installed (like the Python Development plugin, or the JavaScript plugin),
uncheck them.

Select New Remote Site. You will then have to manually enter the name of the feature (no matter) and the
URL.

Type “Eclipse CDT” and add “http://download.eclipse.org/tools/cdt/releases/eclipse3.1”

Note : Be sure you got the latest version of Eclipse (currently 3.1.1) and that the CDT plugin version you
have selected is compatible. If you have a doubt, go to http://www.eclipse.org/cdt/ and check.

Hit Ok. Then, select the “Eclipse CDT” remote site. It should look for the latest version of the CDT
remotely and open a tree with two features : the tools and the SDK. Select both, click Next.

Accept the License, click Next, then Finish.

There will be a security Feature Verification. Click Install All.

It will download and install the CDT features. Time for another coffee, it could be dramatically long.

When it is done, you will have to restart Eclipse. Good boy.

Note : repeat this operation each time you want to install an extra feature (like the Python dev plugin).

Now you can test your brand new C/C++ development tool. Eclipse has its “personal” style and I suggest
you check this page http://met.dnsalias.net:1111/teaching/cdt/ar01s04.jsp#installingcdt for building your
first “Hello World!” with Eclipse. As we won’t discuss general C/C++ programming within the Eclipse
environment in this document, you can also check http://eclipsewiki.editme.com/UsingCDTWithCygwin
for an overview of the CDT features.

It’s time to configure the Eclipse CDT for MaxMSP externals development.

http://download.eclipse.org/tools/cdt/releases/eclipse3.1
http://www.eclipse.org/cdt/
http:/met.dnsalias.net:1111/teaching/cdt/ar01s04.jsp#installingcdt
http://eclipsewiki.editme.com/UsingCDTWithCygwin

• Configuring the CDT plugin for MaxMSP externals

This is the final part which is a little bit tricky. It took me hours to find how to force the plugin to accept
all the required commands. I hope this document will spare you some time and help you keep your
temper.

- In Eclipse, go to the File menu and select New / Manage C Make Project. (It is a little bit
confusing at the start because Eclipse will never mix C and C++ projects and the examples
projects of the maxmspsdk are .c files, not .cpp… They won’t build if you’re in a C++ Project).

Note : As you see there are two kinds of C/C++ projects on Eclipse. Manage and Standard. If you never
looked at the links I’ve added in the previous section, I suggest you do so now. Standard Projects let you
write your own makefiles while Manage Projects write them for you.

- In the New Project window, choose a Project Name. We will use “My_Proj”. Hit Next.

- In the Project Type scrolling menu, select Shared Library (GNU on Windows).

- Leave the Debug / Release configurations checked (it allows you to create two different folders
related to different building configurations. You will probably never change your configuration
between these two, but how knows). Hit Next.

- As this is your first project, there will be no other projects listed in the Referenced C/C++

Projects window, so you may not care at this time. Just go to the C/C++ Indexer Tab and make
sure the Full C/C++ Indexer option is selected. Hit Finish.

As you left the Build Automatically option selected in the Project menu, Eclipse will now try to build
the empty project and you should see the following message in the console window :

**** Full rebuild of configuration Debug for project My_Proj ****

Nothing to build for project My_Proj

This is good. You will also notice Eclipse created an Includes folder under your My_Proj project folder in
the C/C++ Projects window (usually on the left). This is even better. If you don’t have these two things
by now, something bad happened and I’m afraid you will have to uninstall the CDT plugin and the
Cygwin tools, then redo the installation process again.

- Now, you must unselect the Build Automatically option in the Project menu.

- Locate your maxmspsdk folder, find the [01. plussz] project in the ./maxmspsdk/max-projects

folder, drag only the following files : plussz.c and plussz.def, into your Eclipse My_Proj project
folder. The files are copied in your ./Eclipse/Workspace/3.1.1/My_Proj folder on disk.

- Double-click on the plussz.c file in your My_Proj folder. It will load and open the .c file in the

main Editor window. You will notice a message in the Problems window (middle-bottom) :

C/C++ Indexer Problem: Preprocessor Inclusion not found: ext.h in
file:
.\eclipse\WorkSpace\3.1.1\My_Proj\plussz.c on line: 15. plussz.c
My_Proj line 15

This problem will be reported in every fields of your project. A yellow triangle points the same on
your plussz.c file in your My_Proj folder and a yellow ? rectangle points the #include ext.h line 15 of
the .c file in the main editor window.

That’s absolutely normal : we haven’t linked the maxMSP library yet to the project. And that’s what
we will do now.

- Right-click on your My_Proj folder in the C/C++ Projects window (on the left).

- Go to Properties. You will be presented with a Properties For My_Proj window.

- Select the C/C++ Build pane.

- Now in the Tool Settings pane (on the right), go to the GCC C Linker options, select Libraries.

- In the Libraries (-l) field, hit the Add button and enter “MaxAPI”.

- In the Library search path, hit the add button and enter the path were the max library is located

on your disk. For me : "C:\maxmspsdk\c74support\max-includes"

- Go back to the GCC C Compiler pane, select Symbols and add both of the following to the
Defined Symbols (-D) field :

WIN_VERSION
WIN_EXTVERSION

- Select Directories and re-enter the max library path in the Include Paths (-l) field, like you have

done before in the GCC C Linker / Libraries.

- Select Optimization and choose the Optimize (-O1) level.

- Go back to the main GCC C Compiler pane and in the Command field on the right, enter :

gcc -mno-cygwin -fpack-struct=2

“-mno-cygwin” means use the Microsoft standard C libraries, instead of Cygwin standard C libraries.
This step is important if you wish to distribute your extern to people that might not have Cygwin installed.

“-fpack-struct=2” means set the structure member alignment to 2 bytes.

- Go to the main GCC C Linker pane and in the Command field on the right, enter :

gcc -mno-cygwin ../plussz.def

 “../plussz.def” means use a .def file to export only the main function of the DLL

- Now, in the general C/C++ Build pane, select the Build Settings.

- In the Build output section enter the name of your external in the Artifact name field : plussz

- Change the Extension from DLL to .mxe

Everything is done for the Debug configuration. Hit Ok. You can do all the same for the Release
configuration or choose not to take care of.

Now, right-click on your My_Proj folder and select Build Project.

You got a brand new plussz.mxe external for windows, ready to be added to the ./Common
Files/Cycling ‘74/externals folder to be tested in maxMSP.

“On a dark desert highwaaaaaaaay,
Cool wind in my haaaaaaaair,

Oh yeah yeahhhhhhh…”

françois-eudes chanfrault – paris - december 05 2005

• Resources

online :

http://www.ics.uci.edu/~stauro/courses/cse141/summer2005/CourseNotes/InstallingEclipse.htm

http://www.eclipse.org/cdt/

http://met.dnsalias.net:1111/teaching/cdt/ar01s04.jsp#installingcdt

http://eclipsewiki.editme.com/UsingCDTWithCygwin

maxmspsdk files :

writingExternals.pdf
Cygwin_gcc_Howto.rtf

http://www.ics.uci.edu/%7Estauro/courses/cse141/summer2005/CourseNotes/InstallingEclipse.htm
http://www.eclipse.org/cdt/
http://met.dnsalias.net:1111/teaching/cdt/ar01s04.jsp#installingcdt
http://eclipsewiki.editme.com/UsingCDTWithCygwin

